donning sterile gloves PERSONAL HEALTH
Sunday, February 10, 2019

donning sterile gloves PERSONAL HEALTH

Understanding the Glycemic Index and Glycemic Load

The glycemic index (GI) and glycemic load (GL) are tools originally developed to help people with diabetes better manage their blood sugar levels. The GI and GL are related but different measurements, and both numbers rank foods according to how glycemic they are – how quickly they raise blood sugar.

You may already know that eating foods that contain carbohydrates – such as grains, fruits, vegetables, beans and dairy products – will naturally raise blood sugar. But did you know that not all carbohydrate foods have the same impact? For example, eating a serving of white rice will cause a faster rise in blood sugar than eating brown rice, even though both foods contain the same amount of carbohydrate.

Cuc & Celery

Glycemic Index

The Glycemic Index (GI) for a food is measured by how quickly blood sugar rises after a person eats a serving that contains 50 grams of carbohydrate, such as a cup of rice, or one medium bagel. (Pure glucose has a GI of 100 and is the reference point for other foods.)

High glycemic foods (GI >70) will raise blood sugar higher and more quickly than low glycemic foods (GI <55). A food’s GI depends on many factors, including how much protein, fat, or fiber the food contains, how ripe it is or how long it has been stored, and how the food has been cooked or processed. (See the table below for some examples.)

For example, a baked potato has a much lower GI when eaten with its skin, because the fiber in the potato skin slows down digestion. Similarly, carrots that have been cooked or juiced are more quickly absorbed and therefore have a higher GI than raw carrots do.

It’s important to remember that the GI should not be used to judge the overall nutritional value of a food. For example, chocolate covered peanuts have a low GI of 32, but would not be considered healthy additions to your daily diet. Similarly, there are many nutritious foods that have high GIs, such as potatoes and sweet potatoes.

Glycemic Load

How much you eat of a given food also affects your blood sugar response. You might easily eat a cup of rice or a bagel, but how likely are you to eat the 4½ cups of diced watermelon it would take to equal 50 grams of carbohydrate?

The Glycemic Load (GL) was designed to account for portion size. It includes the GI and the overall carbohydrate content of a serving of a given food:

Glycemic Load = (Glycemic Index * net carbohydrate content of the serving)/100

For example, a typical serving of watermelon might be ¾ of a cup, which has about 6 grams of carbohydrate. The GL for that serving of watermelon is 4:

Glycemic Load = (72 * 6)/100 = 4

Eating a serving of a low GL food (GL <10) will have less impact on blood sugar than a serving of a high GL food (GL >20). Watermelon may be a high GI food, but when eaten in a reasonable serving size, it is low glycemic load.

You can look up the GI and GL for different foods here .

FoodGlycemic IndexPortion SizeGlycemic Load
Glucose10050 grams
Baked potato, no skin98medium (~5 oz)26
Rice, white89¾ cup43
Bagel, white72small (3”)25
Watermelon72¾ cup4
Sweet potato70medium (~5 oz)22
Baked potato, w/ skin69medium (~5 oz)19
Rice, brown50¾ cup16
Carrots, diced & boiled49½ cup2
Carrot juice431 cup10
Carrots, raw162/3 cup1

Using the Glycemic Index and Glycemic Load

Though not all nutrition experts agree , there is general consensus that research suggests that eating a low GI/GL diet may help with weight management and may prevent diabetes, cardiovascular diseases, and certain cancers.

If blood sugar levels are a concern for you, choosing low GI/GL foods can help. Other ways to support a healthy blood sugar include exercising, eating a balance of protein, fiber, and fat along with carbohydrate at each meal, and being mindful of portion sizes, particularly with high GI/GL foods.

IMG_9251

Thirsty for “Low GI Juices”?

Fruits and higher GI vegetables such as beets, carrots and sweet potato add flavor and nutrients to your juice, but their glycemic impact can add up when juiced in large amounts. If you’re looking for a low GI juice, try balancing them with lower GI ingredients. Look for fresh juices that emphasize vegetables with low (or no) glycemic impact: cucumbers, peppers, celery, and leafy greens such as spinach, kale, chard, escarole or romaine.

Cassandra Johnson, MS, RDN is a registered dietitian in Boston, MA.

Leave a Reply Cancel reply

Categories

  • Behind The Brands
  • Featured Foods
  • Nutrition
  • Recipes
  • Wellesley
  • Wellness
  • Whats Happening




  • NCBINCBI Logo
  • Skip to main
    content
  • Skip to
    navigation
  • Resources
  • How To
  • About NCBI Accesskeys
My NCBI Sign in to NCBI Sign Out

PMC

US National Library of Medicine

National Institutes of Health
  • Advanced
  • Journal list
  • Help
  • Journal List
  • Diabetes Care
  • v.31(12); 2008 Dec
  • PMC2584181
Logo of diacare

Diabetes Care. 2008 Dec; 31(12): 2281–2283.
doi:  [ 10.2337/dc08-1239 ]
PMCID: PMC2584181
PMID: 18835944

International Tables of Glycemic Index and Glycemic Load Values: 2008

Fiona S. Atkinson , RD, Kaye Foster-Powell , RD, and Jennie C. Brand-Miller , PHD

Fiona S. Atkinson

From the Institute of Obesity, Nutrition and Exercise, University of Sydney, New South Wales, Australia

Find articles by Fiona S. Atkinson

Kaye Foster-Powell

From the Institute of Obesity, Nutrition and Exercise, University of Sydney, New South Wales, Australia

Find articles by Kaye Foster-Powell

Jennie C. Brand-Miller

From the Institute of Obesity, Nutrition and Exercise, University of Sydney, New South Wales, Australia

Find articles by Jennie C. Brand-Miller
Author information Article notes Copyright and License information Disclaimer
From the Institute of Obesity, Nutrition and Exercise, University of Sydney, New South Wales, Australia
Corresponding author: J. Brand-Miller, ua.ude.dysu@rellimdnarb.j
Received 2008 Jul 8; Accepted 2008 Sep 13.
Copyright © 2008, American Diabetes Association

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

This article has been cited by other articles in PMC.

Associated Data

Supplementary Materials
Online-Only Appendix
dc08-1239_index.html (923 bytes)
dc08-1239_1.pdf (4.5M)
dc08-1239_2.pdf (1.5M)
dc08-1239_1239_ReferencesAppendixTables.doc (95K)

Abstract

OBJECTIVE—To systematically tabulate published and unpublished sources of reliable glycemic index (GI) values.

RESEARCH DESIGN AND METHODS—A literature search identified 205 articles published between 1981 and 2007. Unpublished data were also included where the data quality could be verified. The data were separated into two lists: the first representing more precise data derived from testing healthy subjects and the second primarily from individuals with impaired glucose metabolism.

RESULTS—The tables, which are available in the online-only appendix, list the GI of over 2,480 individual food items. Dairy products, legumes, and fruits were found to have a low GI. Breads, breakfast cereals, and rice, including whole grain, were available in both high and low GI versions. The correlation coefficient for 20 staple foods tested in both healthy and diabetic subjects was r = 0.94 (P < 0.001).

CONCLUSIONS—These tables improve the quality and quantity of GI data available for research and clinical practice.

The relevance of dietary glycemic index (GI) and glycemic load (GL) is debated. While the World Health Organization ( 1 ), the American Diabetes Association ( 2 ), Diabetes UK ( 3 ), and the Canadian Diabetes Association ( 4 ) give qualified support for the concept, many health professionals still consider GI and GL complex and too variable for use in clinical practice ( 5 ). The availability of reliable tables of GI is critical for continuing research and resolution of the controversy. New data have become available since previous tables were published in 2002 ( 6 ). Our aim was to systematically tabulate published and unpublished sources of reliable GI values, with derivation of the GL.

RESEARCH DESIGN AND METHODS

We conducted a literature search of MEDLINE from January 1981 through December 2007 using the terms “glyc(a)emic index” and “glyc(a)emic load.” We restricted the search to human studies published in English using standardized methodology. We performed a manual search of relevant citations and contacted experts in the field. Unpublished values from our laboratory and elsewhere were included. Values listed in previous tables ( 6 , 7 ) were not automatically entered but reviewed first. Final data were divided into two lists. Values derived from groups of eight or more healthy subjects were included in the first list. Data derived from testing individuals with diabetes or impaired glucose metabolism, from studies using too few subjects (n ≤ 5), or showing wide variability (SEM > 15) were included in the second list. Some foods were tested in only six or seven normal subjects but otherwise appeared reliable and were included in the first list. Two columns of GI values were created because both glucose and white bread continue to be used as reference foods. The conversion factor 100/70 or 70/100 was used to convert from one scale to the other. In instances where other reference foods (e.g., rice) were used, this was accepted provided the conversion factor to the glucose scale had been established. To avoid confusion, the glucose scale is recommended for final reporting. GL values were calculated as the product of the amount of available carbohydrate in a specified serving size and the GI value (using glucose as the reference food), divided by 100. Carbohydrate content was obtained from the reference paper or food composition tables ( 8 ). The relationship between GI values determined in normal subjects versus diabetic subjects was tested by linear regression. Common foods (n = 20), including white bread, cornflakes, rice, oranges, corn, apple juice, sucrose, and milk were used for this analysis.

RESULTS

Tables A1 and A2 (available in an online appendix at http://dx.doi.org/10.2337/dc08-1239 ) list 2,487 separate entries, citing 205 separate studies. Table A1, representing reliable data derived from subjects with normal glucose tolerance, contains 1,879 individual entries (75% of the total). Table A2 contains 608 entries, of which 491 values were determined in individuals with diabetes or impaired glucose metabolism (20% of the total). The correlation coefficient for 20 foods tested in both normal and diabetic subjects was r = 0.94 (P < 0.001; line of best fit y = 0.9x + 9.7 where x is the value in normal subjects). Table A2 also lists 60 values derived from groups of five or fewer subjects and 57 values displaying wide variability (SEM >15). A summary table ( Table 1 ) comprising values for 62 common foods appears below. More reliable values are available for many foods, including carrots (GI = 39) and bananas (GI = 51).

Table 1

The average GI of 62 common foods derived from multiple studies by different laboratories

High-carbohydrate foodsBreakfast cerealsFruit and fruit productsVegetables
White wheat bread*75 ± 2Cornflakes81 ± 6Apple, raw36 ± 2Potato, boiled78 ± 4
Whole wheat/whole meal bread74 ± 2Wheat flake biscuits69 ± 2Orange, raw43 ± 3Potato, instant mash87 ± 3
Specialty grain bread53 ± 2Porridge, rolled oats55 ± 2Banana, raw51 ± 3Potato, french fries63 ± 5
Unleavened wheat bread70 ± 5Instant oat porridge79 ± 3Pineapple, raw59 ± 8Carrots, boiled39 ± 4
Wheat roti62 ± 3Rice porridge/congee78 ± 9Mango, raw51 ± 5Sweet potato, boiled63 ± 6
Chapatti52 ± 4Millet porridge67 ± 5Watermelon, raw76 ± 4Pumpkin, boiled64 ± 7
Corn tortilla46 ± 4Muesli57 ± 2Dates, raw42 ± 4Plantain/green banana55 ± 6
White rice, boiled*73 ± 4Peaches, canned43 ± 5Taro, boiled53 ± 2
Brown rice, boiled68 ± 4Strawberry jam/jelly49 ± 3Vegetable soup48 ± 5
Barley28 ± 2Apple juice41 ± 2
Sweet corn52 ± 5Orange juice50 ± 2
Spaghetti, white49 ± 2
Spaghetti, whole meal48 ± 5
Rice noodles53 ± 7
Udon noodles55 ± 7
Couscous65 ± 4
Open in a separate window
Dairy products and alternativesLegumesSnack productsSugars
Milk, full fat39 ± 3Chickpeas28 ± 9Chocolate40 ± 3Fructose15 ± 4
Milk, skim37 ± 4Kidney beans24 ± 4Popcorn65 ± 5Sucrose65 ± 4
Ice cream51 ± 3Lentils32 ± 5Potato crisps56 ± 3Glucose103 ± 3
Yogurt, fruit41 ± 2Soya beans16 ± 1Soft drink/soda59 ± 3Honey61 ± 3
Soy milk34 ± 4Rice crackers/crisps87 ± 2
Rice milk86 ± 7
Open in a separate window

Data are means ± SEM.

*Low-GI varieties were also identified.
Average of all available data.

CONCLUSIONS

The 2008 edition of tables of GI and GL has doubled the amount of data available for research and other applications. Most varieties of legumes, pasta, fruits, and dairy products are still classified as low-GI foods (55 or less on the glucose reference scale). Breads, breakfast cereals, rice, and snack products, including whole-grain versions, are available in both high- (70 or greater) and low-GI forms. Most varieties of potato and rice are high GI, but lower GI cultivars were identified. Many confectionary items, such as chocolate, have a low GI, but their high saturated fat content reduces their nutritional value. The GI should not be used in isolation; the energy density and macronutrient profile of foods should also be considered ( 1 ). The high correlation coefficient (r = 0.94) between values derived from testing the same foods in normal and diabetic subjects indicates that GI values in Table A1 are relevant to dietary interventions in people with diabetes.

Although data quality has been improved, many foods have been tested only once in 10 or fewer subjects, and caution is needed. Repeated testing of certain products indicates that white and wholemeal bread have remained remarkably consistent over the past 25 years, but other products appear to be increasing in GI. This secular change may arise because of efforts on the part of the food industry to make food preparation more convenient and faster cooking. Some foods, such as porridge oats, show variable results, which may reflect true differences in refining and processing that affect the degree of starch gelatinization ( 9 ). Users should note that manufacturers sometimes give the same product different names in different countries, and in some cases, the same name for different items. Kellogg’s Special K and All-Bran, for example, are different formulations in North America, Europe, and Australia.

Assignment of GI values to foods requires knowledge of local foods. Ideally, branded product information is available because manufacturers prepare and process foods, particularly cereal products, in different ways. This variability is not unique to the GI but true of many nutrients, including saturated fat and fiber. In the absence of specific product GI information, these tables provide the basis for extrapolation. In the case of low-carbohydrate products, a GI value of 40 for vegetables, 70 for flour products, and 30 for dairy foods could be assigned.

In summary, the 2008 edition of the international tables of GI improves the quality and quantity of reliable data available for research and clinical practice. The data in Table A1 should be preferred for research and coding of food databases. The values listed in Table A2 may be helpful in the absence of other data.

Supplementary Material

Online-Only Appendix:

Click here to view.

Notes

Published ahead of print at http://care.diabetesjournals.org on 3 October 2008.

J.B.M. is the director of a not-for-profit GI-based food endorsement program in Australia. F.S.A. is employed to manage the University of Sydney GI testing service.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C Section 1734 solely to indicate this fact.

References

1. Mann J, Cummings J, Englyst H, Key T, Liu S, Riccardi G, Summerbell C, Uauy R, van Dam R, Venn B, Vorster H, Wiseman M: FAO/WHO Scientific Update on carbohydrates in human nutrition: conclusions. Eur J Clin Nutr 61:S132–S137, 2007 [ PubMed ]
2. Sheard N, Clark N, Brand-Miller J, Franz M, Pi-Sunyer FX, Mayer-Davis E, Kulkarni K, Geil P: Dietary carbohydrate (amount and type) in the prevention and management of diabetes. Diabetes Care 27:2266–2271, 2004 [ PubMed ]
3. Nutrition Subcommittee of the Diabetes Care Advisory Committee of Diabetes UK: The implementation of nutritional advice for people with diabetes. Diabet Med 20:786–807, 2003 [ PubMed ]
4. Canadian Diabetes Association: Guidelines for the nutritional management of diabetes mellitus in the new millennium. A position statement by the Canadian Diabetes Association. Can J Diabetes Care 23:56–69, 2000
5. Franz M: The glycemic index: not the most effective nutrition therapy intervention. Diabetes Care 26:2466–2468, 2003 [ PubMed ]
6. Foster-Powell K, Holt SH, Brand-Miller JC: International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76:5–56, 2002 [ PubMed ]
7. Foster-Powell K, Miller J: International tables of glycemic index. Am J Clin Nutr 62:S871–S90, 1995 [ PubMed ]
8. U.S. Department of Agriculture, Agricultural Research Service: USDA National Nutrient Database for Standard Reference [article online], 2007. Release 20. Available at http://www.ars.gov/ba/bhnrc/ndl . Accessed 20 May 2008
9. Bjorck I, Granfeldt Y, Liljeberg H, Tovar J, Asp N-G: Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59:S699–S705, 1994 [ PubMed ]

Articles from Diabetes Care are provided here courtesy of American Diabetes Association

Formats:

  • Article
  • |

  • PubReader
  • |

  • ePub (beta)
  • |

  • PDF (56K)
  • |

  • Citation

Share

  • Share on Facebook
    Facebook
  • Share on Twitter
    Twitter
  • Share on Google Plus
    Google+

Support Center
Support Center

External link. Please review our privacy policy .
NLM
NIH
DHHS
USA.gov


National Center for
Biotechnology Information ,
U.S. National Library of Medicine

8600 Rockville Pike, Bethesda
MD, 20894
USA

Policies and Guidelines | Contact